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Proposed Equation of State Experimental Program at NOVA/NIF

N. C. Holmes, R. Cauble, P. Celliers, G. Collins, L. Da Silva, B. Hammel,
R. Stewart, O. Strand, and A. Sullivan

We sketch out a program to perform precise and accurate equation of state (EOS) experiments using
large, high-power lasers. The program is divided into three phases: (1) a driver qualification program
which will determine the necessary drive and target design parameters; (2) characterization of low and
high-Z standard materials; (3) accurate impedance-match experiments to determine equations of state
of materials of interest relative to the qualified standards. Novel methods are proposed for the first
phase which are an order of magnitude more sensitive than those applied previously. We identify and
describe the choices for standards and the samples slated for initial studies. In all cases, our goal is to
obtain data that is of sufficiently high quality to serve for design purposes and to validate theories of
material response at high pressures of the order of 1–10 TPa. This is particularly important right now,
for materials such as CH plastics and hydrogen (DT). In addition, we will suggest a program for EOS
measurements for P > 10 TPa, the region of maximum theoretical EOS uncertainty for many materials.

1 Introduction

The high pressure equations of state of mate-
rials must be accurately known for confident
design, simulation, and interpretation of ICF
target experiments and for weapons. This is
particularly timely now, since our goals have

shifted from testing to generating a predictive
design capability. For example, the Labora-
tory will take part in substantial efforts to-
ward new computational capabilities (ASCI);
these efforts will ultimately fail to predict de-

vice performance without better, more exten-
sive, and experimentally validated databases
than now exist.

While Thomas-Fermi theory is valid for

high-Z materials at ultra-high pressure and
temperature, and impact experiments are
available for P ≈ 0.1 TPa (1 Mbar), the inter-
mediate range of roughly 1–100 TPa is diffi-
cult to treat theoretically and experimentally.

With the end of nuclear-driven experiments,
high intensity lasers may, and should, pro-
vide the best way to determine equations of
state at extreme conditions. The Hugoniot
equation of state is the most useful because it

can be determined absolutely. The Rankine-
Hugoniot relations express the conservation of
momentum, mass, and energy across the mov-

ing shock front:

P − P0 = ρ0usup (1)

V = V0

(
1− up

us

)
(2)

E − E0 = (P + P0)(V0 − V )/2 (3)

where E, P , and V are the total energy, pres-
sure and volume. The initial density is ρ0 ≡
1/V0, the velocity of shock propagation is us,
and the material velocity behind the shock
front is up. Subscripted (0) variables refer to

initial conditions and unsubscripted to final
states. The locus of P and V points satisfy-
ing equation 3 and originating from the same
initial conditions is called the Hugoniot. If the
initial density is known, then the determina-

tion of any two other variables serve to com-
pletely determine the final state. One other
essential attribute of shock experiments is the
boundary condition at interfaces between ma-
terials. When a shock passes from one ma-

terial into another, P and up are conserved
across the boundary. This property is ex-
ploited in the process of impedance-matching,
shown schematically in Fig. 1.

The most straight-forward measurements

are of the initial density ρ0 and shock velocity
us. Then we would need to find, for example,
ρ or up. This is difficult in most cases, and is
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Figure 1: Schematic of the method of impedance
matching. The values of P and up are continuous
across the boundaries of adjacent materials. The val-
ues of shock velocity us are measured in both the stan-
dard and the sample of unknown EOS. The EOS of the
sample is determined relative to the equation of state

of the standard.

certainly the problem with laser experiments
as well. The usual approach is to determine,
by some means, the EOS of “standard” mate-
rials, and then use the method of impedance-

matching to find the EOS of unknown mate-
rials relative to those standards. The process
is depicted in Fig. 1 and described in sec-
tion 3. This is the approach taken in most
nuclear-driven EOS experiments, and these

demonstrate the utility of multiple standards
to “bootstrap” the EOS determination pro-
cess. This is the approach we will use here.
Our goal is to propose a program that ex-
ploits the convenience and reliability of the

Hugoniot approach, and avoids the use of code
simulations to determine the actual data.

Since the initial density is relatively easy
to measure, we will not address that question
here, although we note that it can be an issue

for deposited metal foils. We will concentrate
on the question of measuring shock velocity.
Shock velocity will be determined by mea-

suring the shock transit time ∆t of a steady
shock wave across a step of known height ∆x

and then us = ∆x/∆t. This method, and the
proposed use of impedance matching imply
several conditions that all experiments must
meet:

• The shock must be steady in time, i.e.

P and us are constant across the step.

• The shock must be uniform and planar
to assure equal drive across the known
and unknown samples.

• The preheat must be negligible, or if

not, must be small and known. This
effects E0 and ρ0.

The program we propose provides, for the
first time, a way to address all of these issues
comprehensively. There are five parts to the

program:

• determination of drive conditions for

uniform and planar shock generation.

• a novel method for determining shock
steadiness

• characterization of standard materials

• impedance-match experiments on CH.

(Au is also interesting and needs to be
done).

• Hugoniot experiments on liquid or solid
D2 or DT.

2 accuracy

Before we go on the drive requirements, the
accuracy we need to achieve has to be iden-

tified so that we can see how well the drive
and target must be characterized. For exam-
ple, the fractional uncertainty in final density
δρ/ρ ∼ (ρ/ρ0 − 1)δus/us. This places a pre-
mium on the accuracy of shock velocity mea-

surements. While a complete treatment is be-
yond the scope of this proposal, some general
guiding remarks can be made.
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Consider an average case of Al shocked
to 50 Mbar (5 TPa). The shock velocity is

roughly 50 km/s, and the shock compression
ρ/ρ0 ≈ 3. Let’s assume that we desire to mea-
sure us to 1%. For a step height of 100 µm,
the transit time is 2 ns, which must be mea-
sured to at least 14 ps absolute accuracy. This

also means that the step height must be de-
termined to better than 0.7 µm. Here we as-
sume that the uncertainties in ∆x and ∆t are
independent, and this is responsible for the
factors of 1/

√
2. The fractional uncertainty in

density will still be about 2%. Certainly this
is going to be very challenging, and is one of
the main reasons for desiring to do such ex-
periments at NIF, where the time and spatial
scales can be larger than at Nova. However,

these numbers seem well within the state-of-
the-art, so it makes sense to continue. Note
that these experimental uncertainties made no
assumptions about planarity or steadiness of
the shock, but implicitly these have been as-

sumed to add negligible error. We character-
ize these experiments as difficult but possible!

3 Uniform drive

We will emphasize the use of direct drive.
While hohlraum drive is attractive for pro-
ducing potentially spatially smooth drive, the
problems of uniformity and x-ray preheat, as
well as a much more difficult diagnostic envi-

ronment, encourage the use of simpler geome-
tries. A typical experimental arrangement is
shown in Fig. 2. Direct drive using phase
plates to smooth the spatial extent of the
beam, as well as the use of overlapping beams

can produce the required 1% or so intensity
uniformity over large spot sizes, on the order
of several hundred µm. We propose the use of
3ω drive to reduce preheat due to suprather-
mal electrons. This has been reliably demon-

strated. Preheat issues will be addressed in
section 4. Pulse shaping will be required to
alleviate the 2-D plasma expansion effects at

the ablation front.

In impedance-matching, we use the known

EOS of the standard and the measurements of
shock velocity in standard and sample. Since
we know us in the standard, we know the
value of P and up at the standard-sample in-
terface. This means that the values of P , up,

and us are then known in the sample and the
EOS is determined. This is shown as the small
circle in Fig. 1. Referring to Fig. 2, we require
that the drive be uniform over a line corre-
sponding to the equivalent image of the streak
camera slit projected in the target plane, over

the linear extent of the shock breakout area.
This is needed to insure that pressure gen-
erated in the ablating layer, and the “stan-
dard” below the stepped samples is the same
under both samples. This is smaller than the

beam irradiation diameter due to edge rar-
efaction effects caused by the limited lateral
extent of the laser beam. This is required for
impedance-matching to work.

This can be characterized by observing

the shock breakout from a plane-parallel sam-
ple disk with a streak camera at high time
resolution. We propose to perform this char-
acterization on two perpendicular axes across
the back surface of the planar sample. Devi-

ations from simultaneous shock breakout will
be due to irradiation non-uniformity, assum-
ing that the targets are homogeneous on a
scale small compared to the resolution ele-
ments of the imaging system. We expect that

some lateral smoothing will occur in the abla-
tion layer and in the standard base material.

4 Steady shock propagation

That the shock must be steady is obvious;
however, sufficiently sensitive tests have yet
to be made to determine this. For accurate
measurements, we wish the systematic error

due to variations in shock velocity to be neg-
ligible compared to the measurement of shock
velocity. While wedge tests on witness plates
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Figure 2: In the figure, the shock arrives from the bot-
tom and is equal in strength at arrival at both steps.
Shock velocities are measured in the sample and “stan-
dard” materials. The value of us in the standard is
used to determine the strength of the shock arriving

at the sample.

continue to be performed, they suffer by com-
parison the novel method we propose.

Consider the passage of a slightly non-
steady shock across a wedge or step. From
the Hugoniot equations above, we see that
for strong shocks P ≈ ρ0u

2
s. This means that

measurements of time (as in wedge tests),

are sensitive to
√
P . A more sensitive test,

which is performed, incidentally, in tempera-
ture measurements at LLNL’s two-stage gun,
measures the intensity of the emission from
the shock front itself, moving in an initially

transparent medium. We see that

I ≈ σT 4 ∼ E4 ∼ P 4 ∼ u8
s (4)

Thus, small changes in shock velocity or pres-
sure are much more sensitively recorded by
observing the shock emission. We have de-
veloped a fiber optic method which is both
highly sensitive (equivalent f# is about 2.5),

and free of geometric or depth of field effects.
This statement does not hold for the SOP now
in use. Furthermore, it is not necessary to
absolutely calibrate the system to determine
temperature—only the time dependence is of
interest here. Direct drive environments will

be more conducive to doing this experiment
as well, since shielding requirements are less.
The experiment will just consist of a fiber-
optic probe placed in close proximity to the
sample, and an accurately calibrated streak

camera to record the time dependence of the
signal. The sample must be initially trans-
parent, so we will want to use a three layer
target: ablator, a thin opaque layer such as
Au, and an SiO2 sample. This will serve as

a test bed to validate simulations of steady
drive, and this capability will be needed for
other experiments.

5 Preheat

Since the system described above will be
highly sensitive, it may also serve to deter-
mine the actual preheat levels in the target if
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the recording system is calibrated to a stan-
dard source. Preheat is a potentially serious

issue. Preheat will raise the initial energy E0,
so that the sample is no longer on the prin-
cipal Hugoniot. For very strong shocks, for
which E À E0, this is not very serious. How-
ever, strong preheat levels can also decrease

ρ0 due to thermal expansion. The latter is
the most serious problem, and must be elim-
inated. To give some feeling for how severe
this issue is, consider some typical metals that
may be used in our experiments. Aluminum

has a thermal expansion coefficient at STP of
25× 10−6/◦K. At the melting temperature of
about 900 K, we can estimate a linear expan-
sion of roughly 2.3%. Since dρ/ρ = −3dx/x,
the initial density has changed by about 7%

with a preheat level less than 0.1 eV! This is
typical of metals, which are typically about
10% expanded at melt. Clearly, we must find
a way to determine the preheat levels at tem-
peratures which are below the point for which

the material has significant optical luminos-
ity. Recent experiments at AWE are the first
to be precise enough to indicate a system-
atic deviation from expected values in Al/Cu
impedance-matching experiments. The ob-

served discrepancy may well be due to unchar-
acterized low levels of x-ray preheat.

It should be remembered that the ther-

mal expansion is not instantaneous. It pro-
ceeds as a rarefaction wave moving in from
the free surfaces at the sound velocity (for Al
cB ≈ 5 km/s = 5µm/ns). In the rarefied re-
gion, the density is less, and one can expect us
and up to differ from their values on the prin-
cipal Hugoniot. This means that the shock
may not be steady because the shock traverses
regions of varying density. In addition, the in-
sertion of preheat shields in the interior of the

targets may also affect the hydrodynamics: a
preheated high-Z layer may drive shocks into
the surrounding materials, perturbing the ini-
tial state.

A recent suggestion by G. Collins is to use

anti-Stokes Raman methods to determine the
preheat levels in molecular materials such as

D2 or SiO2. This may well be a fruitful ap-
proach. In addition, time-resolved interfer-
ometric methods may be used to determine
the motion of the free surface during preheat.
In all of this, it’s important to mention that

the physics of preheat by x-rays or electrons
involve the kinetics of energy transfer from
electrons to phonons, and this fact must also
influence our notions of preheat characteriza-
tion.

6 standards

We propose to use the technique of
impedance-matching, so that the equations-
of-state of test samples will be measured by
comparison with materials whose EOS is be-
lieved to be well-known. The standard mate-

rials must satisfy several criteria: they must
be easily available in pure form, they must
be easily made or machined to sub-micron
tolerances without change in bulk properties,
they must be stable in phase up to melt, or
well-known otherwise, they must be able to

be confidently and accurately modeled using
our best available EOS theories, and, finally,
their EOS must be known over a wide range
of pressure and temperature.

The materials that best suit these crite-

ria are transition metals: Al, Cu, Mo, Pb,
Ta, Au, Pt. Some of these have been char-
acterized in nuclear-driven EOS experiments.
We believe the best current choice is alu-
minum. It is a nearly-free-electron system,

and is well suited to modern theoretical treat-
ments. It has been used as the LLNL stan-
dard for nuclear-driven experiments, and we
believe that its properties are well known up
to about 25 Mbar.

We propose a series of experiments on Al

to serve as comparisons with existing data and
theory. Agreement of the laser-driven data
will serve to establish it for our use at extreme
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pressures. We will use the Al standard to fur-
ther qualify other standard materials, such as

Au or Pt.

7 Impedance-match experiments

We plan a series of experiments to determine
the Hugoniot EOS of CH in pure and bromine-
loaded forms. These are of particular interest
to the ICF diagnostic and instability program.

The EOS of CH at pressures below 1 Mbar
and 1 eV is dominated by the phase equilib-
ria of carbon, and the best available theory
(CHEQ) may not be useful in the short time
scale and high temperatures of laser experi-

ments. Previous EOS tables of CH proper-
ties are derived from the TIGER EOS code,
and are benchmarked by high explosive data,
again outside the range of usefulness for our
needs. Thus we will determine the EOS of
CH by comparison with the Al standard. We

welcome suggestions from the ICF program to
help define the materials and short-term goals
of this phase of the program.

8 Compression of deuterium

One of the most important materials in the
ICF program is deuterium. However, the cur-

rent situation is that there is large uncertainty
in the EOS in the roughly 1–10 Mbar range,
depicted in Fig. 3. This is well above the gas-
gun single-shock limit of 300 kbar, and also is
in a regime for which the most used models,

QEOS for example, are simply wrong or do
not use appropriate physics. Obviously, bet-
ter theory is needed, and the situation in the
pressure range of interest is complicated by
molecular dissociation and ionization. First

principles calculations are possible but are ex-
tremely time-consuming and difficult to ex-
trapolate. Experiments are needed.

We envision a layered target consisting of
the shock generator layer(s), an Al baseplate,
a liquid or solid D2 sample, and a transparent

Figure 3: Plots of the Hugoniot of liquid D2. QEOS
was modified in an attempt to include molecular disso-
ciation and was used to calculate the left-most curve.
The mixture model of M. Ross was used to calcu-
late the right-most curve. The SESAME EOS, which
agrees with the values in the LLNL EOS tables ob-
tained with QEOS, falls between the two extremum
curves. Neither the SESAME tables nor the earlier
QEOS-generated table agrees with recent shock tem-

perature data.

window, as depicted in Fig. 4. The shock ve-
locity in the Al standard is measured across
the step, as usual, and the shock velocity in
the D2 is measured across the step in the win-
dow. Here we make use of the fact that the D2

is reshocked at the window interface, and the

increase in intensity is recorded by the streak
camera. For experimental accuracy, we pre-
fer to use liquid D2, since the density is sim-
ply related to the saturation pressure, and the
sample is homogeneous. Then the step is eas-

ily defined by the window and the D2 needs
no machining. Solid D2 may also be used, but
care must be taken to avoid bubbles, and the
density must be well-known and at full solid
density.

However, we note that theory is needed
to calculate the Al release isentrope, and we
must have confidence in the thermal EOS in

the theory to do this. This may not be a
problem, and we can certainly test it with
impedance-match experiments on porous Al
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Figure 4: A suggested experimental layout for a liquid
D2 experiment.

in the pressure and temperature range of in-
terest.

9 EOS at P > 100 Mbar

At very high pressures, above about 100 Mbar

in metals, the EOS needs are somewhat differ-
ent. While still in the intermediate range be-
tween the ≈ 1 Mbar data and Thomas-Fermi,
here the EOS is dominated by thermal effects
and ionization. Parenthetically, this is also

the case for hydrogen at 1 Mbar. Since the
Hugoniot equations do not explicitly give the
temperature, the partition of shock energy be-
tween internal modes is unknown. However,
theories of eos and opacity in this regime do

often explicitly use temperature as an inde-
pendent variable. When the available mod-
els are extrapolated into this region of EOS
space, we often find that, while fairly good
agreement with P and ρ is found, temper-

ature can be uncertain by a factor of two.
This is a serious problem, and will impact our
ability to model opacity. We recommend a

study of temperature experimental methods.
X-ray spectroscopy should be investigated as

a means to determine temperature.

10 Errors

The subject of accuracy of EOS experiments
with regard to distinguishing between theory

was briefly discussed recently. I thought it
might be useful for some of you to run through
an analysis on the propagation of errors in
EOS measurements. We start with the Hugo-
niot relations, above Eqs. 1– 3, and neglect

the initial pressure and energy on the left-
hand side of the equations. By taking total
derivatives and a little algebra, it is easy to
show that

dP

P
=
dρ0

ρ0
+
dus
us

+
dup
up

(5)

and

dρ

ρ
=
dρ0

ρ0
− (η − 1)

dus
us

+ (η − 1)
dup
up

(6)

where η = us/(us − up) = ρ/ρ0 is the com-
pression behind the shock front.

If we assume that we make independent

measurements of ρ0, us, up with uncertainties
δρ0, δus, δup, respectively, then the uncertain-
ties in the results will be just the r.m.s. sum
of the errors of the individual measurements:

(
δP

P

)
=



(
δρ0

ρ0

)2

+

(
δus
us

)2

+

(
δup
up

)2



1/2

(7)

(
δρ

ρ

)
=

{(
δρ0

ρ0

)2

+(η − 1)2



(
δus
us

)2

+

(
δup
up

)2






1/2

.(8)

The factor of η − 1 is easily understood. In
Eq. 2, (1 − up/us)

−1 can be rewritten as
us/(us − up). For large compressions, us and
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up must have similar values and the differ-
ence between the two variables will be most

sensitive to error when their difference is low.
The upshot is that we must make very careful
measurements, no matter what!

Let’s consider a real case for D2 at 3 Mbar.
The mass velocity is x km/s, the shock veloc-
ity is y, and the initial density is 0.171 g/cm3.

Assume measurement errors of 2% in us and
up, and 1% in density. Then the total ex-
pected uncertainties on pressure and density
are:

(
δP

P

)
= 3%.

(
δρ

ρ

)
= 5.9%.

For the case where up is not measured di-

rectly, we must use impedance matching to
find its value by comparison with a standard
such as aluminum or copper. In this case, the
uncertainty in up arises from measurement er-
rors of us in the standard, and from system-

atic uncertainty in the Hugoniot of the stan-
dard. In practice, we estimate this systematic
uncertainty over some range of up by fitting
the actual data and Hugoniot analytic fit to
a parabolic model, and introduce three coef-

ficients A0, A1, A2 to represent the total sys-
tematic uncertainty. A parabolic model is ap-
propriate to linear Hugoniot fits, since the un-
certainty in the fit is higher at either end. To
be explicit, we say that the experimental and

systematic uncertainties in up for the standard
with a linear Hugoniot us = C+Sup are given
by:

(
δup
up

)

exp

=
1

S

(
δus
us

)
(9)

(
δup
up

)

sys

= A0 + A1up + A2u
2
p (10)

and the total uncertainty in up is given by

(
δup
up

)
=



(
δup
up

)2

exp

+

(
δup
up

)2

sys




1/2

(11)

This implies that a very good us measurement
is much better than a mediocre up measure-
ment, as long as the standard is well known.
Since we have no absolute data for any ma-
terial above a few Mbar, this can be a real

problem. It is not insurmountable, since we
do have good impedance match data and ex-
cellent theory for simple metals up to tens of
Mbar from nuclear experiments in the U.S.
and Russia.
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